欢迎来到专业的体外诊断原材料信息平台

当前位置> 首页> 技术文章>

白话胶体金,烧制,检测及应用

来源:白话胶体金 

烧制胶体金的步骤

(一)操作:烧万分之一金,40-50nm左右。

1.用18.2兆欧水将氯金酸配制成1%的溶液,可以分装保存。再取1%的溶液1ml置于干净的烧杯或锥形瓶中,加水稀释成100ml(即0.01%,俗称万分之一金)。


2.在容器液面处做好标记,磁力搅拌器加热并快速搅拌,待初沸,一次性快速加入1%的柠檬酸三钠溶液1ml(加液的工具比如枪头、注射器等要清洁),持续搅拌。


3.接下来就是等,可以观察到明显的颜色变化,黄(氯金酸颜色)→灰黑(浑浊)→红(透亮),大概的趋势是这样的。变透亮的红色后可以停止加热,适当低速搅拌几分钟,冷却。


4.冷却后,补水至标记处,避光待用。无需过滤,常温和冷藏存放均可,不可冷冻。


(二)讨论:

1.原料:氯金酸,也叫氯化金、四氯金酸,一般含有结晶水,分子式HAuCl4或者AuCl3·HCl·XH2O。氯金酸对金属有腐蚀性,所以要用塑料药匙,他特别吸潮,所以直接用容器称量而不要用称量纸。为避免吸潮的影响,最好将整支氯金酸直接配制成1%的水溶液,再分装避光保存,可以-20℃避光冻存,纯化学物质,冻存主要是防止污染和长菌。


2.配1%的溶液步骤:这里是常用的质量百分比说法,1%氯金酸溶液就是1g氯金酸固体+99ml水。不用管氯金酸的厂家、纯度、结晶水数量、金含量等,就是氯金酸直接称重。但是需要注意的是,因为有上述差异的存在,不同厂家的氯金酸,在相同配比下,烧出来的金子粒径大小会有差异。


3.水:盐离子对胶体金稳定性有破坏作用,因此最好用18.2兆欧水(电子行业所称的超纯水),没有这种制水设备的话用三蒸水,实在不行的话,据说也可以用娃哈哈纯净水。


4.器皿:因为胶体金有洁癖,所以器皿需要彻底清洁(可以泡铬酸)。早期的论坛帖子都说为了防止玻璃器皿吸附胶体金,要硅化处理,硅化试剂有毒,咱们只是烧胶体金,又不是炼黄金,没必要把小命搭上,如果怕胶体金吸附在玻璃器皿壁上,可以先小量烧一点胶体金,然后固定容器烧金,相当于用胶体金代替硅化来封闭器皿表面。


5.加热工具:制备胶体金,温度在95℃以上即可反应,一般控制在100℃左右,过高的温度可能导致加热接触点的胶体金脱水死金,最终会在胶体金溶液表面漂一层油状物。常用的加热磁力搅拌器、加热套、电炉、微波炉等。出于控温的考虑和搅拌的要求,少量研发推荐用加热磁力搅拌器。


6.加液顺序:有上述加完氯金酸后加热,待沸腾后再加柠檬酸三钠的;也有先煮水,沸腾后再加氯金酸,之后再加柠檬酸三钠的;还有先加柠檬酸三钠再加氯金酸的,感兴趣的可以都尝试一下。不管哪一种加液顺序,都要求迅速加入、迅速混匀。


7.搅拌和控温:理论上,初始反应时,需要液体中试剂充分分散均匀、且各点反应温度相同、且同时发生反应,这样所有的晶核将在瞬间同时形成,最终形成的胶体金颗粒将具有同样的粒径。说起来容易做起来难,但这至少指明搅拌和控温在胶体金制备中有很重要的影响,尤其在大量煮金的时候,液柱高度、沸腾程度、加液时机、加液顺序和方式、反应温度、搅拌速度等等都需要研究优化。


8.补水:加热沸腾必然会流失一部分水,我们可以采用上面的做标记最后补水的措施,也可以在瓶口盖块玻璃片防止水蒸发流失。


9.胶体金的粒径与颜色:一般文献中都会出现如下一张表,虽然不一定准确,但也提供了一些信息。

首先,胶体金粒径和还原剂的加入比例有一定的关系,还原剂越多,胶体金粒径越小。

其次,不同粒径的胶体金最大吸收峰不一样,其颜色也不一样。有人会好奇为什么不同粒径胶体金颜色不一样?胶体金显示的颜色,是其吸收光的互补光颜色,说起来比较拗口,其实这是一个物理问题。

如光谱图所示,不同波长的可见光颜色不一样,我们熟悉的日光,包含全部这些可见光以及不可见的红外和紫外光。也就是这些有色光混合之后可以变成无色的白光。

某一种颜色光和另一种颜色光混合之后变成白光,这两种光就是互补光色。如下图:


平时肉眼看物体之所以显示颜色,是因为日光(白光)照射之后,有的被吸收了,有的被反射回来了,我们看到的是反射光颜色,也就是吸收光的互补光颜色。


回过头来,我们再看一下常见的胶体金分光光度计扫描图,不同粒径的胶体金,虽然都是由金原子组成,但是不同粒径的原子排列是不同的,因此其对白光有不同的吸收表现,比如小粒径的金,其主要吸收500nm左右的蓝绿光,就会显示出互补的红色,而粒径增大之后,吸收峰红移,吸收540nm左右的绿光,就会显示出互补的紫红色。






烧制胶体金的原理

1.反应原理:氯金酸被柠檬酸三钠还原成胶体金颗粒,其过程为金离子(并非全部)→还原成金原子→迅速形成20面体的晶核→其他金原子吸附到晶核上→生长成椭球形的带负电的金颗粒(双电层结构,胶体金表面吸附着负电的AuCl2-离子,相对的H+则分散于胶体之间的溶液中)。

氯金酸一定时,还原剂越多,晶核数量越多,最终的颗粒体积越小,通过控制二者比例,我们可以制备不同大小的胶体金颗粒。常用的40nm左右的金,发红色,一般是1:1的关系,由于不同厂家原料也有影响,如果你感觉烧出来的偏紫,又很想要红色,下次烧金就再稍微增加点还原剂即可。
试剂比例----金子大小----最大吸收峰----颜色,这四者的对应关系各种文献说法不一,我们也没必要太纠结,金子大小与最终的产品性能有一定的关系,所以重要的是实验之初你要从试剂盒反应原理上确定是要大金子还是小金子,而不用去纠结40nm还是50nm,酒红色还是红色,最大吸收峰位置是525还是530。

烧金最重要的是一致性,不要这次烧出来粉红的,下次相同条件烧出来紫的就行了。而这个很考验细节,理论上,发生反应并且形成晶核的均一性,决定了最终胶体金颗粒的均一性,不幸的是,这个过程太快了,很难控制,发生的一瞬间结果就已经注定了。就像生孩子一样,你再怎么想要闺女,最后生出来也可能是个儿子,而你只能安慰自己生男生女都一样,然后默默的努力挣钱给儿子存老婆本。

2.金颗粒大小:常用20、40、60nm的胶体金颗粒(粒径大小);另外,有些人喜欢用λ525、530表示,这个是指胶体金最大吸收峰位置,与颗粒大小有一丢丢关系,后面还会说到。如何选择不同粒径的金,有几个原则:颗粒越小,颜色越偏粉红,显色相对越弱,特异性相对越好;相反颗粒越大,颜色越偏紫,显色越强,特异性相对越差。

3.金浓度:万分之一、万分之二、万分之四等等,指烧金时溶液中氯金酸的浓度。由于反应非常迅速,浓度越高,金子质量越不容易控制,标记时的表现也是这样,高浓度金容易标死。但是在一定条件下,高浓度标记的效率会高,同时标记聚集意味着灵敏度会高(前提是抗体比较抗造,特异性非常好),所以相对来说,高浓度标记相对会节省一点原料。

4.胶体的稳定性问题:胶体金本身是疏水胶体,会因疏水作用力结合而聚集(随着聚集的程度加重,颜色由红→紫→蓝→黑),但因颗粒外层负离子的静电斥力而稳定悬浮于水中,加入NaCl等盐离子会破坏负电斥力(其实调节PH加碳酸钾也有这种影响),导致胶体金颗粒通过疏水作用力结合而死金,而我们标记后的胶体金因为结合了蛋白和合适的封闭,变成了亲水的胶体,减少了疏水位点,所以正常来说金标物更稳定,更耐受环境的破坏,这也是优化标记条件时NaCl滴定法的理论基础,但理论是个好理论,只是NaCl滴定法不正经,不推荐使用,后面标记的章节会再次介绍。

关于稳定性问题,也有说是盐破坏了胶体金的水化膜导致聚集,但是亲水胶体才主要由水化膜起稳定作用,比如蛋白质,而破坏水化膜需要大量的盐,即盐析作用。相反,胶体金是疏水胶体,几乎不形成水化膜,少量盐就会导致死金,所以我认为,胶体金稳定主要是靠负电斥力(而非水化膜),这也是维持疏水胶体稳定的主要作用力。

5.死金:是指胶体金聚集状态,表现多样,轻者整体变紫,重者变黑并沉淀,还有漂在表面的一层油状物,或悬在液体中的一些不溶物。我们研发时一般都追求稳定的不死金的状态,而死金的状态能够达到更高的灵敏度,所以在某些具体产品上,或者某些公司的整体考量上,也有追求死金的时候,所以你看到别人的产品跑出来深紫色或者黑色的线条,也无需大惊小怪。


胶体金的质量检验

1.肉眼观察:主要评价参数“颜色”,“浑浊与否”,“有没有漂浮的油状物(对于研发来说,如果有少量漂浮物,用枪吸出去就好了,也可以用)”。


2.分光光度计扫描:通常做法是扫描450-650nm的吸收曲线,然后看3个不靠谱的参数,①最大吸收峰位置对应胶体金粒径,颗粒越大,最大吸收峰位置越大;②峰宽对应颗粒均匀度,峰形越细颗粒大小越均匀;③最大吸收峰OD值与相对浓度有关。

这三个参数理论上正确,用起来并不理想,以实际经验说,比如你测BBI的商品化40nm胶体金,他的最大吸收峰在526,半峰宽=42nm,最大吸收值0.94,当你测几组自己烧的金,最大吸收峰位置一样是526,但是可能明显看到这几组金子颜色不一样,电镜结果也显示这几组金子的平均直径分别是30到60nm之间,因为最大吸收峰不光与颗粒大小有关,颗粒的形状也有显著影响,因此最大吸收峰这个参数并不能准确预测颗粒直径。

再说峰宽,如果你测得峰宽都在50、60,那说明你的金子均一性确实比BBI的差很多,那要是你测出来也是42,甚至40,能说明你的均一性好吗?结果是否定的,因为这个峰宽跟峰形有很大关系,有聚集的金子,会导致峰形变化,峰宽会很不确定,有可能变大,也可能变低了。

最后这个最大吸收峰OD值与在这里产生吸收峰的粒子的相对浓度有关,可以考虑用他控制相同工艺下金标复合物的复溶比例,但是没法用他横向比较不同金子。

所以最终你可以扫描出一条有模有样的曲线,但从这个曲线上,你找不到控制金子质量的有效方法,至少以上在文献中出镜率最高的三个参数不行,其他的有待发现。下图是峰形对比,红线为BBI金子,蓝线为自制金子,差异虽然比较明显,但是如何在没有对照的情况下提炼参数,或者加对照设置参数,让质控标准可测量化、数值化?偏离到何种程度,体现到产品性能上完全不能接受?


3.电镜:直观,能看到颗粒形状是否规则,大小是否均一,有无聚集等情况,设备成本高,我没做过,没啥好说的。

4.粒径分析仪:可以看出粒径大小和CV,可以通过PDI判断金子是否聚集,比分光光度计有用,比电镜实惠,但是价格也不便宜。

胶体金的应用


胶体金准备好了,在标记蛋白之前。需要根据检测目标物,来选择一种适用的检测模式,然后再来筛选合适的原料和工艺,而检测什么东西,该用何种检测模式,这需要了解一定的基础原理和具体项目的背景知识。这一话,我们先聊一聊免疫层析的一些概念。



我们先从一个产品名字说起:《人绒毛膜促性腺激素(HCG)检测试剂盒(胶体金免疫层析法)》京械注准20122400225。这个是比较规范的命名方式,其中“人绒毛膜促性腺激素(HCG)”表示待测物,括号里是英文缩写,找原料也经常用英文缩写。


“检测”两个字表示这是一个定性试剂盒,如果是定量试剂盒的话,叫“测定试剂盒”,法规规定正式名称里不能出现定量、快速等字眼,有这些字眼的基本都是历史遗留问题。


“胶体金免疫层析法”是检测的方法学,这个是目前最不统一的地方了,有叫“胶体金法”的,有叫“免疫层析法”的,有叫“干式免疫层析法”的,胶体金还算好的,加上荧光更加乱套,可以叫荧光法、免疫荧光法、免疫荧光层析法、荧光免疫层析法、干式免疫荧光层析法、干式荧光免疫层析法……,再加上时间分辨荧光、量子点等等,叫法很不统一,这还不是最难受的,难受的是当你去国家药监局网站查询同类厂家的时候,会发现方法学这里中文的()和英文的()搜索出来的结果还不一样,支付宝都扫不到的福,在这服了。


“京械注准”表示北京药监局批准注册的医疗器械产品,二类产品一般都在省局注册,如果是进口的二类是国家级批准的。“2012”是注册年份,后面接的2表示第二类,再后面的40表示这是6840分类(临床检验分析仪器)。再后面的0225是药监局注册的流水号。公司领证值得庆祝,这里留个彩蛋,20120225是我个人领证的喜庆日子。

 

下面再来说一下什么是胶体金免疫层析法?我们一个一个的名词拆解开来:

胶体金:前面已经说过,他的作用是指示剂/示踪剂,形成肉眼可见的信号,表明这里发生了反应。类似的指示剂可以换成彩色胶乳、荧光微球等。

免疫:内在原理,基于抗原抗体特异性结合的免疫学原理。这个留到下一话讲解。


层析:外在形式,利用物质在固定相与流动相之间不同的分配比例,达到分离目的的技术。在这里,分配比例不同是我们通过免疫结合实现的。


下面以HCG举例,先看一个动图演示:

图片


待测的液体样本是流动相,从样品垫处开始层析。


到结合垫处,样本中HCG会与胶体金标记的α-HCG抗体结合;这里的抗体叫labeling antibody,因为他标记了东西;也叫detecting antibody,因为他偶联了一个可以形成信号的标签,用来检测样本中是否存在待测物。

继续层析到NC膜上,HCG的另一个位点被T线的β-HCG抗体结合,HCG即从流动相(样本)分离到了固定相(NC膜)上,形成βHCG抗体-HCG-αHCG抗体(胶体金)这样一个三明治夹心的复合物,出现肉眼可见的红色线条,为阳性结果。如果样本中无HCG,则金标抗体不会在T线形成三明治夹心,就不会有T线。这里的抗体叫coating antibody,因为是包被在固相上的;也叫capture antibody,因为他从流动相中捕获待测物。


无论样本中有无HCG,过量的胶体金标记α-HCG抗体都会随样本继续层析,而C线的羊抗鼠IgG会无条件的结合胶体金标记α-HCG抗体(鼠单抗)的Fc段,形成肉眼可见的红色线条,C线虽然叫质控线,但仅代表层析过程正常,如果不出C线则需要重新测试,但是有C线并不能代表结果是准确的(这是后话,也是研发头疼的地方)。


流动的液体最终会被顶端的吸水纸吸收,吸水纸承载能力强,保证样本充分层析并减少回流(逆向层析)的现象。


C、T线抗体都是包被在NC膜上的,他是整个反应的基台,除去抗原、抗体本身外,在所有组件中,NC膜对产品的性能影响最大。


以上组件都是粘贴在PVC胶板上的(也有PS材质的),再加上MAX胶、手柄纸或卡壳,一个完整的层析产品就出来了。


那为什么会发生层析?我们先来看一个现象:毛细作用

图片


为什么液体会上升,为什么玻璃管越细上升的越高?这里有两个物理概念:

浸润:浸润液体在固体表面倾向于展开,因为亲水固体分子对水分子的引力大于水分子之间的引力,液体则倾向于沿固体表面展开。


表面张力:与液体内部相比,液-气界面处液体分子间距大,分子间斥力减弱,分子相吸促使液体表面缩小,这个力叫做表面张力。


在毛细作用中,管壁处液体浸润形成了凹液面,表面张力促使凹液面恢复平直,表现为向上的合力,带动管中液体上升,上升的力被重力抵消后,液面即停止上升,因此管径越细,相同重量的液体会升的越高。


而我们使用的NC膜、样品垫、结合垫、吸水纸等材料,都具有多孔毛细管结构,又是亲水材料(或经过亲水处理),因此液体样本能在上面层析。层析产品一般加完液会平放,样本不需要抵消重力,从左到右的使劲跑,所以又叫侧向层析lateral flow,当然同时也有纵向的层析发生。

图片

有些产品一直直立浸在液体里检测,这么多的毛细孔也能保证样本抵消重力顺利层析到吸水纸,最终跑上去多少液体取决于试纸条这些组件的满载吸水能力,喝饱了也会撑着。


需要注意的是,除了胶板,每个组件都具有一定的吸水能力,好处是吸收水并使之层析,坏处是会存水和逆向层析。对于滴加样本的检测方式,一般在70-100ul左右,加样体积不够时,不足以将金子全部冲刷到吸水纸,就不能顺利的完成检测;而一次加太多样,超过样品垫的承载能力,可能会发生溢液的情况,样本的不规则层析,导致金子释放出问题,进而线条会乱七八糟的。


而逆向层析,是指完成检测后,时间长了,液体会从吸水纸往样品垫端流动,严重时导致条子背景不干净,甚至由阴性变假阳的结果。其实时间也没多长,30min左右就开始了,并不是等下面的组件都干了之后才反流,只不过造成明显后果可能需要一两个小时以上了。


结合图示,大概的把免疫层析试纸条的主要组件和基本功能介绍了一下,想要详细学习了解,可以去网上找一下相关资料,比如NC膜有很多厂家的培训资料,也有不少的文献研究,后面写NC包被的时候,我也会写一些NC膜的理论知识。 


还有不同材质的东西,吸水速度和蓄水能力也不同,同一材质不同厚度性质亦有差异,这些一般耗材厂家都会提供一些参数。对我们的实验来说,可以更换不同材质的组件实现一些小目的,比如用薄聚酯加快样品垫吸液速度或金垫释放速度,用厚玻纤提高样品垫承载能力防溢液等。胶板虽然不吸水,看似跟样本层析不搭边,但是对于一个固定的卡壳,尝试不同厚度的胶板也可以改善层析过程,当时有条件还是优化或筛选更好用的卡壳。



来源: 白话胶体金 

声明:本平台注明来源的稿件均为转载,仅用于分享,不代表平台立场,如涉及版权等问题,请尽快联系我们,我们第一时间更正,谢谢!


返回顶部