欢迎来到专业的体外诊断原材料信息平台

当前位置> 首页> 产品目录> 试剂类原料> 其他>

蛋白纯化琼脂糖

    • 品牌:库柏生物
    • 英文名:cube biotech
    • 货号:
    • 型号:
    • 价格:
    • 别名:

产品介绍

PureCube His Affinity Agarose (NTA)是针对组氨酸标签的亲和层析产品,组氨酸标签是应用广泛的亲和层析标签,这种标签具有小尺寸、低免疫原性的特点和在多种天然或变性条件下的广泛适用性,NTA相对于IDA具有更高的洗脱液纯度。

产品优势:
1)德国制造,品质与信誉的坚实保证;
2)结合载量可高达80mg/mL,目前市面上最高结合能力;
3)更优越的DTT和EDTA稳定性和耐受性;
4)凝胶的多孔性和均匀粒径,使蛋白与凝胶之间有很好地相互作用;
5)适合低压环境下的纯化过程(大规模纯化制备或预装柱均可使用);
6)高性价比,为研发、生产降低成本;
7)适用于大肠杆菌和真核细胞的裂解液和上清液;
8)同时可装载Co, Cu, Zn和其它金属离子。

 

优势详解:

 

1. 收率高纯度高


Fig. 1: Over 20% more yield obtained with PureCube Ni-NTA Agarose. SDS-PAGE of GFP expressed in E. coli and purified in gravity columns with PureCube Ni-NTA Agarose and Ni-NTA resin from Competitor Q. 80 mg/mL protein yield was obtained with PureCube Ni-NTA Agarose (E1–E4, Cube) compared to 65 and 48 mg/mL, respectively, with the widely used alternative resins G and Q (E1–E4, Competitor G / Competitor Q). 

 

 

Cube Biotech

蛋白结合能力

> 80mg/mL

 

 

 

1. 优越的DTT和EDTA稳定性


Fig. 2: NTA is robust in the presence of reducing and chelating agents. GFP-His was purified on gravity columns containing PureCube Ni-NTA Agarose after exposing the resin for 1 h to 3 concentrations of DTT or EDTA. NTA exhibits a shallow decay rate in binding capacity.

 

PureCube Ni-NTA琼脂糖在DTT和EDTA存在下非常坚实,在稳定性测试中,将PureCube Ni-NTA琼脂糖置于DTT与EDTA浓度逐渐升高的环境中处理1小时。再用处理过的凝胶在重力层析柱中纯化大肠杆菌表达的GFP-His,凝胶的蛋白结合能力因存在DTT与EDTA而下降,但是衰减率平缓,即使在1.5 mM EDTA,凝胶依然具有其最大结合能力的54%。

 

 

Cube Biotech

DTT稳定性

<10mM

EDTA稳定性

<1.5mM

 

 

 

 

产品特性:

应用

Specific binding and purification of 6x his-tagged proteins

特异性

Affinity to His-tagged proteins

结合能力

>80 mg/mL

Bead Ligand

Ni-NTA

粒径大小

40 μm

螯合剂稳定性

Stable in buffer containing 10 mM DTT and 1 mM EDTA

保存

Delivered as a 50 % suspension

所需试剂耗材

Lysis Buffer

Wash Buffer

Elution Buffer

Ice bath

Refrigerated centrifuge for 50 mL tube (min 10,000 x g)

50 mL centrifuge tube

Micropipettor and Micropipetting tips

Disposable gravity flow columns with capped bottom outlet, 2 ml

 pH meter

End-over-end shaker

SDS-PAGE buffers, reagents and equipment Optional: Western Blot reagents and equipment

 

 

 

订货信息:


31101

PureCube Ni-NTA Agarose (1 ml)

31103

PureCube Ni-NTA Agarose (10 ml)

31105

PureCube Ni-NTA Agarose (50 ml)

31110

PureCube Ni-NTA Agarose (250 ml)

31112

PureCube Ni-NTA Agarose (500 ml)

31115

PureCube Ni-NTA Agarose (1000 ml)

31120

PureCube Ni-NTA Agarose (5000 ml)


参考文献:

1. Haeussler, Kristina, et al. "Characterization of Plasmodium falciparum 6-phosphogluconate dehydrogenase as an antimalarial drug target." Journal of molecular biology 430.21 (2018): 4049-4067.

2. Wang, Xiaoliang, et al. "Protein–Polymer Microcapsules for PCR Technology." ChemBioChem 19.10 (2018): 1044-1048.

3. Volkov, Oleksandr, et al. "Structural insights into ion conduction by channelrhodopsin 2." Science 358.6366 (2017): eaan8862.

4. Li, Hai-Chao, et al. "A New Homo-Hexamer Mn-Containing Catalase from Geobacillus sp. WCH70." Catalysts 7.9 (2017): 277.

5. Rues, Ralf-Bernhardt, et al. "Cell-free production of membrane proteins in Escherichia coli lysates for functional and structural studies." Heterologous Expression of Membrane Proteins. Humana Press, New York, NY, 2016. 1-21.

6. Stressler, Timo, et al. "A novel glutamyl (aspartyl)-specific aminopeptidase A from Lactobacillus delbrueckii with promising properties for application." PloS one 11.3 (2016): e0152139.

7. Hsieh, Yi-Lin, et al. "Molecular Characterization of Ethylene Response Sensor 1 (BoERS1) in Bambusa oldhamii." Plant molecular biology reporter 34.2 (2016): 387-398.

8. Stressler, Timo, et al. "A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity." Applied microbiology and biotechnology102.6 (2018): 2709-2721.

9. Ewert, Jacob, et al. "Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii." Enzyme and microbial technology 110 (2018): 69-78.

10. Ewert, Jacob, et al. "Buß, Maren et al.(2019). Specific high affinity interaction of Helicobacter pylori CagL with integrin α V β 6 promotes type IV secretion of CagA into human cells. The FEBS Journal. 10.1111/febs.14962." Enzyme and microbial technology 110 (2018): 69-78.

11. Cho, H.-Y. et al. (2018). The SnRK1-eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence. New Phytologist. 222. 10.1111/nph.15589.

12. Haeussler, Kristina et al.(2019). Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: Characterization of the Plasmodium vivax enzyme and inhibitor studies. Malaria Journal. 18. 10.1186/s12936-019-2651-z.

13. Moritzer, Ann-Christin et al. (2018). Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry. 294. jbc.RA118.005393. 10.1074/jbc.RA118.005393.

14. Bauer, Westley S et al. “Rapid concentration and elution of malarial antigen histidine-rich protein II using solid phase Zn(II) resin in a simple flow-through pipette tip format.” Biomicrofluidics vol. 11,3 034115. 2 Jun. 2017, doi:10.1063/1.4984788

15. Worm D., et al. (2019) "Expression, purification and stabilization of human serotonin transporter from E. coli" Protein Expression and Purification Volume 164, December 2019, 105479 DOI: 10.1016/j.pep.2019.105479

16. Buß et al. (2019). Specific high affinity interaction of Helicobacter pylori CagL with integrin α V β 6 promotes type IV secretion of CagA into human cells. The FEBS Journal. 10.1111/febs.14962.

17. Voß M. et al.(2019). Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation. Journal of Structural Biology. 10.1016/j.jsb.2019.09.007.

18. Matys, S. et al. (2019). Characterization of specifically metal-binding phage clones for selective recovery of cobalt and nickel. Journal of Environmental Chemical Engineering. 103606. 10.1016/j.jece.2019.103606.

19. Coscolín, Cristina et al. (2018). Controlled manipulation of enzyme specificity through immobilization-induced flexibility constraints. Applied Catalysis A: General. 565. 10.1016/j.apcata.2018.08.003.

20. Bauer, Westley S et al. Magnetically-enabled biomarker extraction and delivery system: towards integrated ASSURED diagnostic tools.” The Analyst vol. 142,9 (2017): 1569-1580. doi:10.1039/c7an00278e.

21. Scherr, Thomas et al. (2016). A handheld orbital mixer for processing viscous samples in low resource settings. Anal. Methods. 8. 10.1039/C6AY01636G.

22. Stressler, T. et al. (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application. PLOS ONE. 11. e0152139. 10.1371/journal.pone.0152139.

23. Yang, M. et al. (2019). Rational Design of Alginate Lyase from Microbulbifer sp. Q7 to Improve Thermal Stability. Marine Drugs. 17. 378. 10.3390/md17060378.

24. Ewert, J. et al. (2017). Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii. Enzyme and Microbial Technology. 110. 10.1016/j.enzmictec.2017.10.002.

25. Stressler, T. et al. (2018). A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity. Applied Microbiology and Biotechnology. 102. 10.1007/s00253-018-8828-5.

26. Yang, M. et al.(2019). Study on expression and action mode of recombinant alginate lyases based on conserved domains reconstruction. Applied Microbiology and Biotechnology. 103. 10.1007/s00253-018-9502-7.

27. Wag et al. (2020). A near-infrared fluorescent probe quinaldine red lights up the β-sheet structure of amyloid proteins in mouse brain. Biosensors and Bioelectronics. 153. doi.org/10.1016/j.bios.2020.112048

28. Tian, Dongrui, et al. "Heterologous expression and molecular binding properties of AofleA, a fucose-specific lectin from nematophagous fungus Arthrobotrys oligospora." International Journal of Biological Macromolecules (2020).

成都正民德思生物科技有限公司致力于成为中国与世界生物技术产业的纽带,以务实的原则将欧洲高科技、高质量、高效能的产品引进中国。正民德思从2013年起至今,作为生物制药和体外诊断领域相关产品的供应商,秉承“为客户增值”的企业价值观提供优质的服务,通过对合作伙伴、客户及社会的契约责任的高度重视,已积累与中国、德国、西班牙、奥地利、美国、芬兰等众多知名生命科学企业、生物技术公司、制药公司、科研院校的合作经验,并获得合作伙伴和客户的高度认可并保持稳固的战略合作关系,互相支持、共同发展。

 

目前,成都正民德思生物科技有限公司作为德国蛋白纯化产品生产商/服务商Cube Biotech生物科技公司中国独家总代理、西班牙生物磁性分离设备制造商SEPMAG中国独家总代理、西班牙免疫诊断试剂研发服务商Pragmatic Diagnostics公司的中国独家战略合作方,在成都成立Cube BiotechSEPMAGPragmatic Diagnostics的中国总部办事处,全权负责在中国地区的营销事务、销售及售后服务等所有工作。

成都正民德思生物科技有限公司

  • 联系人:李夏
  • 电话:028-85568133
  • QQ:
  • 邮箱:marketing@zenmindes.com
  • 手机:18000541296

公司简介

成都正民德思生物科技有限公司致力于成为中国与世界生物技术产业的纽带,以务实的原则将欧洲高科技、高质量、高效能的产品引进中国。正民德思从2013年起至今,作为生物制药和体外诊断领域相关产品的供应商,秉承“为客户增值”的企业价值观提供优质的服务,通过对合作伙伴、客户及社会的契约责任的高度重视,已积累与中国、德国、西班牙、奥地利、美国、芬兰等众多知名生命科学企业、生物技术公司、制药公司、科研院校的合作经验,并获得合作伙伴和客户的高度认可并保持稳固的战略合作关系,互相支持、共同发展。 目前,成都正民德思生物科技有限公司作为德国蛋白纯化产品生产商/服务商Cube Biotech生物科技公司中国独家总代理、西班牙生物磁性分离设备制造商SEPMAG中国独家总代理、西班牙免疫诊断试剂研发服务商Pragmatic Diagnostics公司的中国独家战略合作方,在成都成立Cube Biotech、SEPMAG和Pragmatic Diagnostics的中国总部办事处,全权负责在中国地区的营销事务、销售及售后服务等所有工作。 正民德思通过创新的国际商业运作理念,打造出一支高素质的团队,推进稳步的发展战略,已实现了品牌、市场、团队、技术、管理国际化标准。同时,正民德思拥有来自麻省理工学院、海德堡大学、奥地利科学院等知名海外科研院所生物科技制药领域的专家教授作为技术顾问团队。公司现引进一位诺贝尔奖评委的新技术,开发新一代生物制药技术,致力于成为“专精特新”企业为中国生命科学领域助力。

返回顶部